

0040-4039(94)E0050-8

A NEW REACTION SYSTEM FOR EFFICIENT ELECTROCHEMICAL OXIDATION OF N-METHOXYCARBONYL-2,2,2-TRIFLUOROETHYLAMINES

Yoshihiro MATSUMURA,* Takashi TOMITA, Masaki SUDOH, and Naoki KISE

Division of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-01, Japan

Abstract: Electrochemical oxidation of N-methoxycarbonyl-2,2,2-trifluoroethylamine in a system of 2,2,2-trifluoroethanol/Et₄NBF₄ or 2,2,2-trifluoroethanol/acetonitrile/Et₄NBF₄ gave N-methoxycarbonyl-1-(2,2,2-trifluoroethoxy)-2,2,2-trifluoroethylamine in good yield and with good current efficiency.

We have already reported electrochemical α -methoxylation of N-alkyl- or N,N-dialkylamines protected with an electron-withdrawing group such as methoxycarbonyl group¹ and subsequently showed many examples indicating the usefulness of the α -methoxylated products as α -aminoalkylating reagents toward a variety of nucleophiles.² In continuation of these studies, electrochemical oxidation of 2,2,2-trifluoroethylamine derivatives is interesting since the expected products, 1-methoxy-2,2,2-trifluoroethylamine derivatives, might be usable as 2,2,2-trifluoroethylating reagent, which would be worthwhile in view of biological importance of trifluoromethylated compounds.³ However, there has been no precedent for electrochemical α -methoxylation of perfluoroalkylamine derivatives except N-(2,2,2-trifluoroethyl)anilines.⁴ This may be due to the high oxidation potentials of N-protected trifluoroethylamines.

In general, oxidation of organic substrates possessing high oxidation potentials does not efficiently proceed since oxidation of solvents and/or anion parts of supporting electrolytes competes or overwhelmingly takes place. We wish to report herein a new reaction system in which even substrates such as N-methoxycarbonyl-2,2,2-trifluoroethylamine **1a** can be efficiently oxidized (eq 1).

CF ₃ NH-CO ₂ Me		e 	OCH ₂ CF ₃ CF ₃ NH-CO ₂ Me	(1)
1a	Et ₄ NBF ₄ Pt anode and cathode		2a	
solvent		F/mol	Yield (%)	
CF3CH2OH CF3CH2OH/CH3	CN (1 : 9)	2.5 2.3	87 <i>%</i> 88%	

Our device is the use of 2,2,2-trifluoroethanol (TFE) instead of methanol as a solvent or a co-solvent. Methanol is electrochemically oxidizable⁵ as shown in a current-potential curve of a system of methanol/CH₃CN(1:9) in which growing up of current was observed at around 1.1 V vs SCE (Fig.1, b) and in a cyclic voltammetry of a system containing methanol which indicated an oxidation wave at around 1.1 V (Fig.2, b). On the other hand, a reaction system consisting of TFE and CH₃CN showed a current-potential curve (Fig.1, a) and a cyclic voltammetry (Fig.2, a) which were identical with the back-grounds.

In fact, electrolysis of 1a (2mmol) in a system of $TFE(5mL)/Et_4 N B F_4(1mmol)$ or $TFE(1mL)/CH_3CN(9mL)/Et_4NBF_4(1mmol)$ using platinum electrodes (1cm x 1cm) and an undivided cell with a constant current (100mA) gave α -trifluoroethoxylated product 2a⁶ in good yields at 2.3-2.5*F*/mol of electricity (eq 1), though that of 1a in a system of methanol /Et_4NOTs or Et_4NBF_4 resulted in the complete recovery of 1a.

In order to elucidate a mechanism of this electrochemical oxidation, we tried oxidation of Nmethoxycarbonyl-N-methyl-2,2,2-trifluoroethylamine 1b and found that the substitution preferentially took place at the methyl group (eq 2).⁶ This site selectivity was consistent with our previous results obtained in electrochemical α -methoxylation of unsymmetrical dialkyl-substituted carbamates¹ and anilines⁷ in which the less substituted α -site was exclusively methoxylated, and also with the selectivity in electrochemical α -cyanation of 2,2,2trifluoroethylated amines.⁸ Thus, we propose a mechanism involving electron-transfer from 1a,b to anode at the initiation step,⁹ which is similar to a mechanism in electrochemical oxidation of carbamates¹ and amines.^{7,8}

$$\begin{array}{cccc} CF_{3} & \underset{l}{\text{N-CO}_{2}\text{Me}} & \stackrel{e}{\underset{\text{Et}_{4}\text{NBF}_{4}}{\text{Et}_{4}\text{NBF}_{4}}} & CF_{3} & \underset{l}{\text{N-CO}_{2}\text{Me}} & (2) \\ & \underset{l}{\text{H}_{3}} & \underset{\text{Pt anode and cathode}}{\text{Pt anode and cathode}} & CH_{2}\text{OCH}_{2}\text{CF}_{3} \\ & \underset{\text{L}_{3}}{\text{H}_{3}} & \underset{\text{C}_{3}\text{CH}_{2}\text{OH/CH}_{3}\text{CN} (1:9) & 2b \\ & & 2.0 \text{ F/mol} & 66\% \end{array}$$

Synthetic utility of 2a was realized as follows. Although the acid-promoted generation of α -trifluoromethylated iminium cation from 2a was not achieved in contrast with the results of 1-methoxy-2,2,2-trifluoroethylaniline derivatives,⁴ we succeeded in 1-amino-2,2,2-trifluoroethylation at the α -position of cyclohexanone by using 2 equivalents of LDA in which imine 3 might be involved as the intermediate to afford 4 (eq 3).⁶

Advantage of our new reaction system was also indicated by electrochemical oxidation of α -branched alkylamine derivatives which generally gave dealkylated amine derivatives.¹ For example, the oxidation of N-methoxycarbonyl-N,N-diisopropylamine 5 giving a dealkylated product 6 was a 16% current efficiency in a system of methanol/Et4NOTs, but the current efficiency was largely improved under our new reaction system to 66% (eq 4). Fig.3 shows the reaction profile of these reactions.

Although further mechanistic study of electrochemical oxidation of **1a**,**b** should be carried out, our system might possess a versatile synthetic utility since it might be applicable to a variety of substrates which have been hardly oxidized by electrochemical method so far. Such studies are now under investigation and the results will be reported in the near future.

Acknowledgements: One of the authors (Y.M.) wishes to thank the Japanese Ministry of Education, Science and Culture for a Grant-in-Aid for Scientific Research on Priority Areas (No. 236). We also thank Daikin Industries, Ltd. for a generous gift of 2,2,2-trifluoroethanol.

References and Notes

- (a) Shono, T; Hamaguchi, H.; Matsumura, Y. J.Am.Chem.Soc., 1975, 97, 4264. b) Shono, T.; Matsumura, Y.; Tsubata, K. Org.Synth., 1984, 63, 206.
- 2. Shono, T.; Matsumura, Y.; Tsubata, K. J.Am.Chem.Soc., 1981, 103, 1172.
- 3. Fuchigami, T.; Yamamoto, K.; Nakagawa, Y. J.Org.Chem., 1991, 56, 137, and references cited therein.
- 4. Fuchigami, T.; Nakagawa, Y.; Nonaka, T. J.Org.Chem., 1987, 52, 5491.
- Hammerich, O.; Svensmark, B. in "Organic Electrochemistry" ed. by Lund, H; Baizer, M.M. Mercel Dekker, New York, 1991, 3rd ed., pp 615-657.
- 6. **2a**; mp 62°C; IR (KBr) 3400, 1735, 1715, 1630, 1330, 1200 cm⁻¹; ¹H NMR (CDCl₃, 200MHz) δ 3.80 (s, 3H), 4.07 (q, 2H, J=8.4Hz), 5.52 (br s, 2H); ¹³C NMR (CDCl₃, 50MHz) δ 53.13, 66.11 (q, J_{CCF}=35.8 Hz), 80.05 (q, J_{CCF}=36.0Hz), 121.54 (q, J_{CF}=280.0Hz), 123.18 (q, J_{CF}=276.0Hz), 156.75. **2b**; liquid; IR (neat) 2950, 1720, 1450, 1400, 1275, 1100, 960, 825, 775 cm⁻¹; ¹H NMR (CDCl₃, 200MHz) δ 3.82 (s, 3H), 3.70-4.20 (m, 4H), 5.00 (s, 2H); ¹³C NMR (CDCl₃, 50MHz) δ 46.35 (q, J_{CCF}=34.4Hz), 53.78, 66.21 (q, J_{CCF}=32.4Hz), 78.74, 124.13 (q, J_{CF}=277.4Hz), 124.61 (q, J_{CF}=277.8Hz), 157.11.

4; major isomer: $R_f 0.5$ (hexane/AcOEt=2/1); mp 107°C; IR (KBr) 3300,1705, 1300, 1250, 1180, 1130, 1110, 1100, 1055 cm⁻¹; ¹H NMR (CDCl₃, 200MHz) δ 1.60-2.03 (m, 4H), 2.07-2.22 (m, 2H), 2.36-2.48 (m, 2H), 2.86-2.98 (m, 1H), 3.72 (s, 3H), 4.18-4.40 (m, 1H), 6.33 (d, 1H, J=12Hz); ¹³C NMR (CDCl₃, 50MHz) δ 24.92, 27.99, 33.03, 42.92, 48.39, 52.61, 54.77 (q, J_{CCF}=31.7 Hz), 124.70 (q, J_{CF}=282Hz), 157.18, 210.98.

minor isomer; R_f 0.4 (hexane/AcOEt=2/1); mp 131°C; IR (KBr) 3320, 1700, 1285, 1240, 1175, 1130, 1050 cm⁻¹; ¹H NMR (CDCl₃, 200MHz) δ 1.50-2.28 (m, 6H), 2.30-2.42 (m, 1H), 2.48-2.60 (m, 2H), 2.70-2.83 (m, 1H), 3.76 (s, 3H), 4.98-5.18 (m, 1H), 5.63 (br s, 1H); ¹³C NMR (CDCl₃, 50MHz) δ 24.25, 26.70, 28.16, 41.55, 48.93, 50.41 (q, J_{CCF}=30.3 Hz), 122.55 (q, J_{CF}=282 Hz), 156.57, 208.16.

- 7. Shono, T.; Matsumura, Y.; Inoue, K.; Ohmizu, H.; Kashimura, S. J.Am.Chem.Soc., 1982, 104, 5753.
- 8. Konno, A.; Fuchigami, T.; Fujita, Y.; Nonaka, T. J.Org.Chem., 1990, 55, 1952.
- 9. Since oxidation waves of **1a,b** were not observed below 2.5 V, direct electron transfer mechanism is not conclusive yet.

(Received in Japan 28 September 1993; accepted 17 December 1993)