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Abstract: Electrochemical oxidation of N-methoxycarbonyl-2,2,2-trifluoroethylamine in a system of 2,2,2-
trifluoroethanol/EtsNBF; or 2,2,2-trifluoroethanol/acetonitrile/Et4NBF,; gave N-methoxycarbonyl-1-(2,2,2-
trifluoroethoxy)-2,2,2-triflucroethylamine in good yield and with good current efficiency.

We have already reported electrochemical a-methoxylation of N-alkyl- or N,N-dialkylamines protected with
an electron-withdrawing group such as methoxycarbonyl groupl and subsequently showed many examples
indicating the usefulness of the a-methoxylated products as a-aminoalkylating reagents toward a variety of
nucleophiles.2 In continuation of these studies, electrochemical oxidation of 2,2,2-trifluoroethylamine derivatives
is interesting since the expected products, 1-methoxy-2,2,2-trifluoroethylamine derivatives, might be usable as
2,2,2-trifluoroethylating reagent, which would be worthwhile in view of biological importance of
trifluoromethylated compounds.3 However, there has been no precedent for electrochemical a-methoxylation of
perfluoroalkylamine derivatives except N-(2,2,2-n'iﬂuoroethyl)anilines.4 This may be due to the high oxidation
potentials of N-protected trifluoroethylamines.

In general, oxidation of organic substrates possessing high oxidation potentials does not efficiently proceed
since oxidation of solvents and/or anion parts of supporting electrolytes competes or overwhelmingly takes place.
We wish to report herein a new reaction system in which even substrates such as N-methoxycarbonyl-2,2,2-
trifluoroethylamine 1a can be efficiently oxidized (eq 1).
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solvent F/mol Yield (%)
CF{CH,0H 25 87%
CF;CHLOH/CH,CN (1:9) 2.3 88%
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Our device is the use of 2,2,2-trifluoroethanol (TFE) instead of methanol as a solvent or a co-solvent.
Methanol is electrochemically oxidizable® as shown in a current-potential curve of a system of
methanol/CH3CN(1:9) in which growing up of current was observed at around 1.1 V vs SCE (Fig.1, b)and in a
cyclic voltammetry of a system containing methanol which indicated an oxidation wave at around 1.1 V (Fig.2, b).
On the other hand, a reaction system consisting of TFE and CH3CN showed a current-potential curve (Fig.1, a)
and a cyclic voltammetry (Fig.2, a) which were identical with the back-grounds.
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In fact, electrolysis of la (2mmol) in a system of TFE(SmL)/Et4NBF4(lmmol) or
TFE(1mL)/CH3CN(9mL)/EtyNBF4(1mmol) using platinum electrodes (lcm x lcm) and an undivided cell with a
constant current (100mA) gave a-trifluoroethoxylated product 2a%in good yields at 2.3-2.5F/mol of electricity (eq
1), though that of 1a in a system of methanol /Et4NOTs or Et4NBF4 resulted in the complete recovery of 1la.

In order to elucidate a mechanism of this electrochemical oxidation, we tried oxidation of N-
methoxycarbonyl-N-methyl-2,2,2-triflucroethylamine 1b and found that the substitution preferentially took place at
the methyl group (eq 2).6 This site selectivity was consistent with our previous results obtained in electrochemical
a-methoxylation of unsymmetrical dialkyl-substituted carbamates! and anilines’ in which the less substituted a-site
was exclusively methoxylated, and also with the selectivity in electrochemical o-cyanation of 2,2,2-

trifluoroethylated amines.8 Thus, we propose a mechanism involving electron-transfer from 1a,b to anode at the

initiation step,9 which is similar to a mechanism in electrochemical oxidation of carbamates! and amines.’8
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Synthetic utility of 2a was realized as follows. Although the acid-promoted generation of a-trifluoro-
methylated iminium cation from 2a was not achieved in contrast with the results of 1-methoxy-2,2,2-tri-
fluoroethylaniline derivatives,4 we succeeded in 1-amino-2,2,2-triflucroethylation at the o-position of cyclo-

hexanone by using 2 equivalents of LDA in which imine 3 might be involved as the intermediate to afford 4 (eq 3).6

o Li
o CFs
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O NCO,Me

O ; :

in THF 58% (ratio of diastereoisomers 6 : 4)

Advantage of our new reaction system was also indicated by electrochemical oxidation of «-branched
alkylamine derivatives which generally gave dealkylated amine derivatives.! For example, the oxidation of N-
methoxycarbonyl-N,N-diisopropylamine § giving a dealkylated product 6 was a 16% current efficiency in a system
of methanol/Et4NOTs, but the current efficiency was largely improved under our new reaction system to 66%
(eq 4). Fig.3 shows the reaction profile of these reactions.
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Although further mechanistic study of electrochemical oxidation of 1a,b should be carried out, our system
might possess a versatile synthetic utility since it might be applicable to a variety of substrates which have been
hardly oxidized by electrochemical method so far. Such studies are now under investigation and the results will be
reported in the near future.
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